

MIL-STD-1553/1760 5V Monolithic Dual Transceiver

αRD1567

General Description

The αRD1567 is low power CMOS dual transceiver designed to meet the requirements of MIL-STD-1553/1760 specifications.

The transmitter section of each channel takes complimentary CMOS/TTL digital input data and converts it to bi-phase Manchester encoded 1553 signals suitable for driving the bus isolation transformer. Separate transmitter inhibition control signals are provided for each transmitter.

The receiver section of each channel converts the 1553 bus bi-phase data to complimentary CMOS/TTL data suitable for inputting to a Manchester decoder. Each receiver has a separate enable input which can be used to force the output of the receiver to a logic 0. To minimize the package size for this function, the transmitter outputs are internally connected to the receiver inputs, so that only two pins are required for connection to each coupling transformer.

The αRD1567 have 5000V HBM built-in ESD protection.

Total Ionizing Dose (TID): 50 krads (Si).

Dose rate = 3.6 - 36 krads (Si)/h

SEE information:

No SEL was observed with LET of 62.5 MeV, Xenon heavy ion.

No SEFI was observed with LET of 62.5 MeV, Xenon heavy ion.

Single event transient (SET):

 σ_{sat} <1.2e-5 cm² at LET= 62.5 MeV·cm²/mg, LET_{th}> 20.4 MeV·cm²/mg.

The heavy ion trials are performed on qualification lots only.

Ordering information

Table 1.

Part	Temp. range, °C	Package	Package drawing	Burn-In case temp, °C	Burn-In time, hrs
αRD1567	-55 to +125	24-lead CFP	Figure 4	+125	240

Pin Function Description

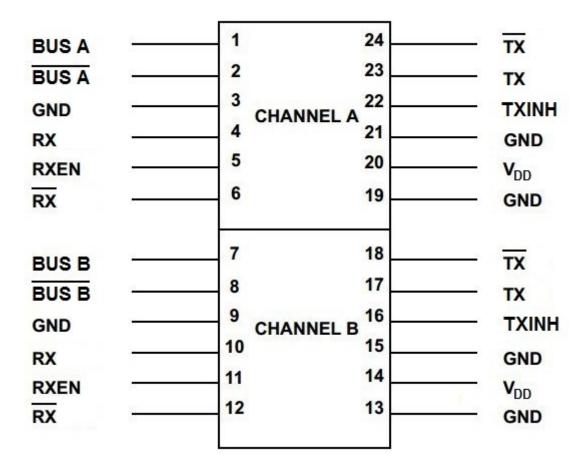


Table 2.

Decemention	Macasasia	Pin №		
Description	Mnemonic	Channel A	Channel B	
MIL-STD-1533 bus positive signal	BUS	1	7	
MIL-STD-1533 bus negative signal	BUS	2	8	
Ground	GND	3, 19, 21	9, 13, 15	
Receiver output	RX	4	10	
Receiver enable	RXEN	5	11	
Receiver output inv	\overline{RX}	6	12	
Pover Input	$V_{ extsf{DD}}$	20	14	
Transmitter inhibition	TXINH	22	16	
Transmitter input	TX	23	17	
Transmitter input inv	TX	24	18	

Operating conditions and absolute maximum ratings

Table 3.

Characteristics, units	Symbol	Operating conditions		Absolute maximum ratings	
·		min	max	min	max
Supply Voltage, V	V_{DD}	4,5	5,5	_	7
Logic Input voltage (high), V	U _{IH}	2	V_{DD}	-0,3	V_{DD}
Logic Input voltage (low), V	UıL	0	0,8	-0,3	V_{DD}
Receiver differential voltage, V	UIR	_	9	_	10
Peak output current, A	l _{out}	_	0,55	_	1
Power dissipation, W	Ртот	_	0,95		1,1

Simultaneous transmission by both channels is not allowed. Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device.

Electrical characteristics within operating temperature range

Table 4.

Table 4.					4010 41	
Parameter, units	Symbol	Condition	min	typ	max	
Input Current	I _{IH}	$V_{DD} = 5,5V V_{IH} = V_{DD}$	_	0,04	10	
Input Current, µA	I _{IL}	$V_{DD} = 5,5V, V_{IL} = 0$	-10	0,04	0	
	Icc	V _{DD} = 5,5V, no transmission	_	7	24	
Supply Current, mA	I _{CC1}	$V_{DD} = 5,5V,$ 50% duty cycle	_	250	352	
	I _{CC2}	$V_{DD} = 5,5V,$ 100% duty cycle	_	450	600	
Receiver section						
Output Voltage HI, V	Uон	$V_{DD} = 4,5V, I_{OH} = -0,4 \text{ mA}$	2,7	4,3	_	
Output Voltage LO, V	U _{OL}	$V_{DD} = 4,5V, I_{OH} = 1 \text{ mA}$	_	0,2	0,4	
Threshold Voltage, V	V_{TH}	V_{DD} = 5V, 1 MHz sine wave	0,28	0,56	1,2	
Input Differential Resistance, kOhm	R_{l}	V _{DD} = 4,5V	20	63	-	
Receive Delay, ns	t_R	$V_{DD} = 4,5V$	_	250	480	
Receiver Enable Delay, ns	t _{R EN}	V _{DD} = 4,5V	_	25	50	
Transmitter section						
Output Voltage, V	U _{О pp}	$V_{DD} = 4,55,5V,$ R _L = 35 Ohm, fig. 1	6	7,0	9	
Output Voltage, V	ОО рр	$V_{DD} = 4,55,5V,$ $R_L = 70 \text{ Ohm, fig. 2}$	18	20,5	27	
Transmitter Noise, mV	$U_{N pp}$	$V_{DD} = 4,55,5V$	_	0,3	10	
Output Dynamic	U _{O DIN}	$V_{DD} = 4,55,5V,$ R _L = 35 Ohm, fig. 1	-90	±50	90	
Voltage Offset, mV		$V_{DD} = 4,55,5V,$ R _L = 70 Ohm, fig. 2	-270	±150	270	
Output Differential Resistance, kOhm	Ro	V _{DD} = 4,5V, no transmission		173	-	
Transmission Delay, ns	t _T	$V_{DD} = 4,5V$	_	130	200	
Transmitter Inhibition	t _{THL INH}	$V_{DD} = 4,5V$	_	70	120	
Delay, ns	t _{TLH} INH	$V_{DD} = 4,5V$	-	130	190	
Rise/Fall Time, ns	t _F	$V_{DD} = 4,55,5V$	100	170	300	

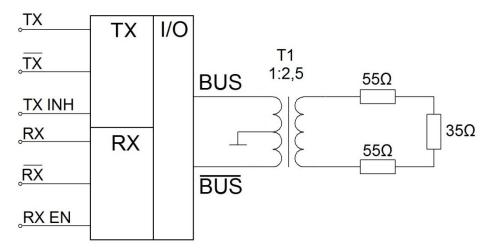


Figure 1 – Test circuit, direct coupling to MIL-STD-1553 BUS Ω

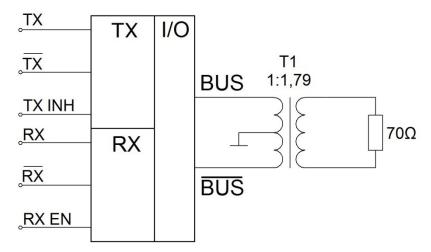
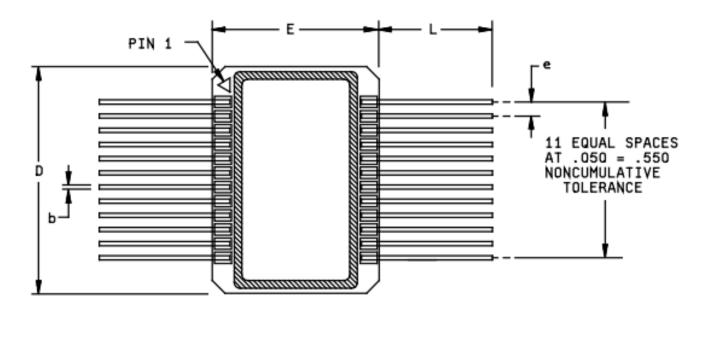
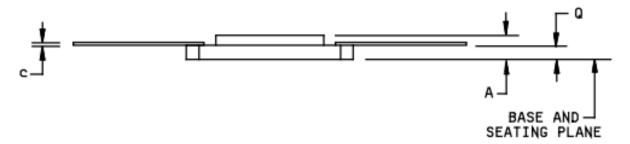


Figure 2 – Test circuit, transformer coupling to MIL-STD-1553 BUS


Recommended thermal protection


Package should be mounted to or contact a heat removal rail located in the printed circuit board. To ensure proper heat transfer between the package and the heat removal rail, use a thermally conductive material between the package and the heat removal rail.

Layout

To minimize Output Dynamic Voltage Offset, layout differences between BUS and \overline{BUS} lines and between TX and \overline{TX} lines should be minimal.

Physical Dimensions

Dimension	Inches			
Dimension	Min	Max		
Α		.095		
b		.018		
С	.007	.013		
D		.810		
Е	.580	.600		
е	.045	.055		
L	.400			
Q	.060	.080		

Figure 4 – CFP-24 package dimensions

